Recent Progress in (General) Gauge Mediation

David Shih
Institute for Advanced Study
and
Rutgers University

Meade, Seiberg, DS (0801.3278)
Buican, Meade, Seiberg, DS (0812.3668)
Dumitrescu, Komargodski, Seiberg, DS (1002.xxxx)

Questions for the LHC

- Where is the Higgs?
- What is the next layer of fundamental matter?
- What is the origin of the weak scale?
- Is naturalness a valid physical principle?
- What is the dark matter?

Supersymmetry?

Real-world SUSY-breaking

- Superpartners not observed => SUSY must be broken in the real world
- SUSY-breaking in the MSSM is explicit and must be soft (dimensionful) in order to not re-introduce quadratic divergences.
- Naturalness: expect typical size of soft masses around Mz, i.e. 100-1000 GeV

$$\mathcal{L}_{soft} = -\frac{1}{2} \sum_{i=1}^{3} M_i \lambda_i \lambda_i - \sum_{\tilde{f} = \tilde{Q}, \tilde{u}, \tilde{d}, \tilde{L}, \tilde{e}} \tilde{f}^{\dagger} m_{\tilde{f}}^2 \tilde{f} + (Higgs)$$

complex gaugino masses

3x3 Hermitian squark and slepton masses

mu, B, A-terms

SUSY Flavor Problem

- There are strong experimental constraints on SUSYbreaking in the MSSM.
- The soft Lagrangian contains 100+ parameters in addition to the SM couplings. A generic point in this parameter space is experimentally ruled out:
 - Precision flavor-changing tests
 - Non-observation of superpartners

Mediation of SUSY

Hidden sector: SUSY+...

Visible sector: MSSM+...

- Ultimately, SUSY must be broken spontaneously in a separate hidden sector (Dimopoulos & Georgi).
- © Constraints on the soft Lagrangian => constraints on how SUSY-breaking is "mediated" from hidden sector to the MSSM.
- Gauge mediation is a calculable, viable framework that automatically solves the SUSY flavor problem.

Minimal gauge mediation

(Dine, Nelson, Nir, Shirman, ...)

$$W = \lambda X \phi^2$$
$$\langle X \rangle = M + \theta^2 F$$

- X is a singlet spurion for hidden sector SUSY-breaking.
- $oldsymbol{\circ}$ ϕ are messengers in real representations of G_{SM} .
- Through their coupling to X, they receive tree-level SUSY-breaking mass splittings:

$$M_{\psi_{\phi}} = \begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix}, \qquad M_{\phi}^2 = \begin{pmatrix} M^2 & F \\ F & M^2 \end{pmatrix} \quad \Rightarrow \quad M_{\phi}^2 = M^2 \pm F$$

Loops of the messengers and SM gauge fields communicate SUSY-breaking to the MSSM.

MGM Soft Masses

1-loop gaugino masses:

$$M_{r=1,2,3} \sim \frac{\alpha_r}{4\pi} \frac{F}{M}$$

2-loop sfermion mass-squareds:

$$m_{\tilde{q}}^2 \sim \left(\frac{\alpha_3}{4\pi}\right)^2 \left(\frac{F}{M}\right)^2$$
 $m_{\tilde{\ell}}^2 \sim \left(\frac{\alpha_{1,2}}{4\pi}\right)^2 \left(\frac{F}{M}\right)^2$

MGM Phenomenology

$$M_r \propto rac{F}{M}, \qquad m_{\tilde{f}}^2 \propto \left(rac{F}{M}
ight)^2$$

- MGM soft masses are controlled by essentially only one scale: F/M.
- This leads to many specific and well-known "predictions" of gauge mediation:
 - Gaugino unification
 - Sfermion mass hierarchy
 - Bino or slepton NLSP
 - **6**

squarks, gluino

L-handed sleptons, wino

R-handed sleptons, bino

Beyond MGM

- To date, many models of gauge mediation have been constructed, with a wide variety of predictions.
- Questions:
 - What are the universal predictions of gauge mediation?
 - How large is the parameter space?
 - If we find hints of supersymmetry at the LHC, how can we tell whether it's gauge mediation?

Plan of the Talk

- Background and Motivation
- General Gauge Mediation
 - Formulas for the soft masses
 - Sum rules
 - Parameter space
- General Messenger Gauge Mediation
 - Rewriting the soft masses
 - Superpotential vs. Kahler potential interactions
 - Simplifying limits
- Summary and Outlook

General Gauge Mediation

(Meade, Seiberg & DS)

Hidden sector SUSY+...

Visible sector: MSSM+...

- Hidden sector:
 - spontaneously breaks SUSY at a scale M
 - $oldsymbol{\circ}$ has a weakly-gauged global symmetry $G\supset G_{SM}$
 - o includes messengers, if present
- Theory decouples into separate hidden and visible sectors in g->0 limit.
- Philosophy: work exactly in the hidden sector but to leading order in g.

Current Supermultiplet

- All the information we need about the hidden sector is encoded in the currents of G and their correlation functions.
- The current belongs to a supermultiplet:

$$j_{\mu}
ightarrow (J,\,j_{lpha},\,ar{j}_{\dot{lpha}},\,j_{\mu})$$
 (Assume G=U(1) for simplicity)

In superspace, the SUSY generalization of current conservation is

$$D^{2}\mathcal{J} = 0$$

$$\mathcal{J} = J + i\theta j - i\bar{\theta}\bar{j} - \bar{\theta}\sigma^{\mu}\theta j_{\mu} + \dots$$

Current two-point functions

By current conservation and Lorentz invariance, the nonzero two-point functions are:

$$\langle J(x)J(0)
angle
ightarrow C_0(x)$$
 $\langle j_{lpha}(x)ar{j}_{\dot{lpha}}(0)
angle
ightarrow C_{1/2}(x)$ Real $\langle j_{\mu}(x)j_{
u}(0)
angle
ightarrow C_1(x)$ $\langle j_{lpha}(x)j_{eta}(0)
angle
ightarrow B(x)$ Complex

If SUSY is unbroken, can show:

$$C_0 = C_{1/2} = C_1, \qquad B = 0$$

Coupling to visible sector

Weakly gauge G=U(1):

$$\mathcal{L}_{int} = g \int d^4\theta \, \mathcal{J}\mathcal{V} + \mathcal{O}(g^2)$$

$$= g(JD + \lambda^{\alpha} j_{\alpha} + \bar{\lambda}_{\dot{\alpha}} \bar{j}^{\dot{\alpha}} + V^{\mu} j_{\mu}) + \mathcal{O}(g^2)$$

Integrate out hidden sector exactly. Effective theory for the gauge supermultiplet:

$$\delta \mathcal{L}_{eff} = \frac{1}{2} g^2 \tilde{C}_0(0) D^2 - g^2 \tilde{C}_{1/2}(0) i \lambda \sigma^{\mu} \partial_{\mu} \bar{\lambda} - \frac{1}{4} g^2 \tilde{C}_1(0) F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} g^2 (M\tilde{B}(0) \lambda \lambda + c.c.) + \dots$$

Soft terms can be written in terms of the currentcurrent correlators.

Coupling to visible sector

$$\delta \mathcal{L}_{eff} = \frac{1}{2} g^2 \tilde{C}_0(0) D^2 - g^2 \tilde{C}_{1/2}(0) i \lambda \sigma^{\mu} \partial_{\mu} \bar{\lambda} - \frac{1}{4} g^2 \tilde{C}_1(0) F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} g^2 (M\tilde{B}(0) \lambda \lambda + c.c.) + \dots$$

$$m{ ilde{o}}$$
 Gaugino mass: $M_{\lambda}=g^2M ilde{B}(0)$

Sfermion mass:

$$m_{\tilde{f}}^2 = g^4 A$$

$$A = -\int \frac{d^2 p}{(2\pi)^4} \left(3C_1(p^2/M^2) - 4C_{1/2}(p^2/M^2) + C_0(p^2/M^2) \right)$$

Generalizing to SU(3)xSU(2)xU(1)

- Trivial to generalize from U(1) to SU(3)xSU(2)xU(1)
- Each gauge group factor comes with a current supermultiplet

$$\mathcal{J} \to \mathcal{J}_{r=1,2,3}$$

Gaugino and sfermion masses are given by the same formulas as before, convolved with group theory factors:

$$M_r = g_r^2 M B_r$$

$$m_{\tilde{f}}^2 = \sum_{r=1}^3 C_{\tilde{f}}^r g_r^4 A_r$$

Sum Rules

$$m_{\tilde{f}}^2 = \sum_{r=1}^3 C_{\tilde{f}}^r g_r^4 A_r$$

- $m{\circ}$ Five MSSM sfermion masses f=Q,U,D,L,E are given in terms of 3 parameters $A_{r=1,2,3}$. So there must be 2 relations.
- These take the form:

$$\operatorname{Tr} Y m^2 = \operatorname{Tr} (B - L) m^2 = 0$$

- Sum rules true at the scale M. (Small) corrections from RG and EWSB.
- These relations were known before in specific different models (Martin & Ramond; Faraggi et al; Kawamura et al; Martin; Dimopoulos et al). Here we see they are completely general.

Parameter space

The GGM parameter space consists of 9 real parameters:

$$A_{1,2,3}, (|B_{1,2,3}|, |\arg(B_{1,2,3}))$$

- Comments:
 - SUSY CP problem in general
 - Gauge coupling unification not tied to gaugino unification
 - Parameter space much larger than minimal gauge mediation, where

$$B_r = \frac{F}{M}, \quad A_r = \left(\frac{F}{M}\right)^2$$

Parameter space

- Question: are there simple models of weakly coupled messengers that cover the entire parameter space?
- We are looking for an "existence proof"
- Carpenter, Dine, Festuccia & Mason studied this question recently in the context of messenger models with small F-type SUSY breaking. (Cf. S. Martin, hep-ph/9608224.)
- They found models with the right number of parameters (6) but which did not cover the entire parameter space.

Parameter space

$$\mathcal{M}_{mess} = \begin{pmatrix} M^2 & F \\ F & M^2 \end{pmatrix} \rightarrow \begin{pmatrix} M^2 + D & F \\ F & M^2 - D \end{pmatrix}$$

- By considering messenger models with additional D-type splittings, one can cover the entire parameter space of GGM (Buican, Meade, Seiberg, DS).
- Such splittings could come from e.g. a U(1)' with an effective FI parameter (Poppitz & Trivedi; Nakayama et al), or from hidden sector gauge dynamics as in "semi-direct gauge mediation" (Seiberg, Volansky & Wecht).
- The entire parameter space is physical and should be used as the basis for future phenomenological explorations of gauge mediation!

Plan of the Talk

- Background and Motivation
- @ General Gauge Mediation
 - Formulas for the soft musses
 - Sum rules
 - Parameter space
- General Messenger Gauge Mediation
 - Rewriting the soft masses
 - Superpotential vs. Kahler potential interactions
 - Simplifying limits
- Summary and Outlook

Messenger Models Revisited

- Parameter space of GGM is much larger than MGM -more general, but less predictive.
- Most models of gauge mediation are messenger models. These tend to have fewer parameters and to be more predictive.
- How do we describe the most general messenger model in the GGM framework?

General Messenger Gauge Mediation

(Dumitrescu, Komargodski, Seiberg, DS)

SUST sector

 \mathcal{L}_{int}

SM singlets Scale: \sqrt{F}

Supersymmetric SM charged fields Scale: M

Visible sector

MSSM+...
Scale: M_{weak}

- SUSY-breaking and messenger sectors can be strongly coupled, but they are weakly coupled to one another.
- Recast everything in terms of operators and their correlation functions.
- This framework should include all messenger models...

General Messenger Gauge Mediation

Most general interaction between messenger and SUSY-breaking sector:

$$\mathcal{L}_{int} = \frac{\lambda}{\Lambda^{\Delta_h + \Delta_m - 3}} \int d^2\theta \, \mathcal{O}_h \mathcal{O}_m + \frac{\tilde{\lambda}}{\Lambda^{\tilde{\Delta}_h + \tilde{\Delta}_m - 2}} \int d^4\theta \, \tilde{\mathcal{O}}_h \tilde{\mathcal{O}}_m + c.c.$$

- We would like to systematically expand in powers of the interactions and derive the leading-order soft masses in GMGM.
- For this it is useful to rewrite the GGM soft masses in a more convenient form...

Rewriting the soft masses

Recall the chiral supermultiplet

$$\bar{D}\Phi = 0 \quad \Leftrightarrow \quad Q\phi = 0$$

By analogy, an equivalent formulation of the current s'multiplet is to start with the defining relation:

$$D^2 \mathcal{J} = \bar{D}^2 \mathcal{J} = 0 \quad \Longleftrightarrow \quad Q^2 J = \bar{Q}^2 J = 0$$

It follows that:
$$j_lpha\equiv Q_lpha J$$
 $ar j_{\dotlpha}\equiv ar Q_{\dotlpha} J$ $\sigma^\mu_{lpha\dotlpha}j_\mu\equiv [Q_lpha,ar Q_{\dotlpha}]J$

Rewriting the soft masses

Using action of supercharges, can show:

$$\langle Q^2 J(p) J(-p) \rangle = \langle Q^{\alpha} J(p) Q_{\alpha} J(-p) \rangle$$

= $\langle j^{\alpha}(p) j_{\alpha}(-p) \rangle$
= $MB(p)$

Similar manipulations lead to

$$\langle Q^2 \bar{Q}^2 J(p) J(-p) \rangle =$$

$$p^2 \Big(3C_1(p^2/M^2) - 4C_{1/2}(p^2/M^2) + C_0(p^2/M^2) \Big)$$

Rewriting the soft masses

Thus:

$$M_{\lambda} = g^2 \langle Q^2 J(0) J(0) \rangle$$

$$m_{\tilde{f}}^2 = g^4 \int \frac{dp^2}{p^2} \langle Q^2 \bar{Q}^2 J(p) J(-p) \rangle$$

(Buican, Meade, Seiberg, DS)

- Comments on the result:
 - Check: vanish when SUSY is unbroken.
 - At high momentum, only the JJ OPE matters. Can use this to prove convergence of the scalar mass integral.

Soft Masses in GMGM

$$M_{\lambda} = g^2 \langle Q^2 J(0) J(0) \rangle$$

$$m_{\tilde{f}}^2 = g^4 \int \frac{dp^2}{p^2} \langle Q^2 \bar{Q}^2 J(p) J(-p) \rangle$$

- Using rewritten GGM formulas, it is straightforward to work out leading-order GMGM soft masses for different types of interactions.
- Key simplifications arise from treating interactions perturbatively:
 - Correlators factorize into separate correlators in messenger sector and SUSY-breaking sector.
 - Messenger sector correlators are supersymmetric.

Kahler potential interactions

$$\mathcal{L}_{int} = \frac{\tilde{\lambda}}{\Lambda^{\tilde{\Delta}_h + \tilde{\Delta}_m - 2}} \int d^4\theta \, \tilde{\mathcal{O}}_h \tilde{\mathcal{O}}_m + c.c.$$

$$\langle Q^2 J(x) J(0) \rangle = \frac{\tilde{\lambda}}{\Lambda^{\tilde{\Delta}_h + \tilde{\Delta}_m - 2}} \langle Q^4 \tilde{\mathcal{O}}_h \rangle \int d^4y \, \langle \left(Q^2 \tilde{\mathcal{O}}_m(y) \right) J(x) J(0) \rangle$$

$$\langle Q^4 J(x) J(0) \rangle = \frac{\tilde{\lambda}}{\Lambda^{\tilde{\Delta}_h + \tilde{\Delta}_m - 2}} \langle Q^4 \tilde{\mathcal{O}}_h \rangle \int d^4y \, \langle \left(Q^4 \tilde{\mathcal{O}}_m(y) \right) J(x) J(0) \rangle$$

Comments:

- Gaugino masses can vanish at this order if messenger sector is R-symmetric.
- $m{\varnothing}$ F-component of $\tilde{\mathcal{O}}_h$ does not contribute to gaugino masses. Seen previously in many examples...

Kahler potential interactions

$$\mathcal{L}_{int} = \frac{\tilde{\lambda}}{\Lambda^{\tilde{\Delta}_h + \tilde{\Delta}_m - 2}} \int d^4\theta \, \tilde{\mathcal{O}}_h \tilde{\mathcal{O}}_m + c.c.$$

$$\langle Q^2 J(x) J(0) \rangle = \frac{\tilde{\lambda}}{\Lambda^{\tilde{\Delta}_h + \tilde{\Delta}_m - 2}} \langle Q^4 \tilde{\mathcal{O}}_h \rangle \int d^4y \, \left\langle \left(Q^2 \tilde{\mathcal{O}}_m(y) \right) J(x) J(0) \right\rangle$$

$$\langle Q^4 J(x) J(0) \rangle = \frac{\tilde{\lambda}}{\Lambda^{\tilde{\Delta}_h + \tilde{\Delta}_m - 2}} \langle Q^4 \tilde{\mathcal{O}}_h \rangle \int d^4y \, \left\langle \left(Q^4 \tilde{\mathcal{O}}_m(y) \right) J(x) J(0) \right\rangle$$

Comments:

- $M_{\tilde{g}}^2 \sim \tilde{\lambda}^2 \ll m_{\tilde{f}}^2 \sim \tilde{\lambda}. \text{ Scalars much heavier than gauginos.}$ Split-SUSY phenomenology (Arkani-Hamed & Dimopoulos; Giudice & Romanino). Exacerbated little hierarchy problem.
- This setup includes semi-direct gauge mediation (Seiberg, Volansky & Wecht).

Superpotential interactions

$$\mathcal{L}_{int} = \frac{\lambda}{\Lambda^{\Delta_h + \Delta_m - 3}} \int d^2\theta \, \mathcal{O}_h \mathcal{O}_m + c.c.$$

Includes MGM, EOGM (Cheung, Fitzpatrick, DS), ...

$$\langle Q^{2}J(x)J(0)\rangle = \frac{\lambda}{\Lambda^{\Delta_{h}+\Delta_{m}-3}} \langle Q^{2}\mathcal{O}_{h}\rangle \int d^{4}y \, \langle Q^{2}(\mathcal{O}_{m}(y))J(x)J(0)\rangle$$

$$\langle Q^{4}J(x)J(0)\rangle = \frac{\lambda^{2}}{\Lambda^{2(\Delta_{h}+\Delta_{m}-3)}} \int d^{4}y \, d^{4}y' \, \left\langle Q^{4}\left(\mathcal{O}_{h}^{\dagger}(y)\mathcal{O}_{h}(y')\right)\right\rangle$$

$$\times \left\langle Q^{4}\left(\mathcal{O}_{m}^{\dagger}(y)\mathcal{O}_{m}(y')\right)J(x)J(0)\right\rangle$$

- Now sfermion and gaugino masses appear at the same order in the interaction -- a more natural spectrum.
- However, the sfermion masses are not completely factorized.

Simplifying limit

$$\langle Q^4 J(x) J(0) \rangle = \frac{\lambda^2}{\Lambda^{2(\Delta_h + \Delta_m - 3)}} \int d^4 y \, d^4 y' \, \left\langle Q^4 \left(\mathcal{O}_h^{\dagger}(y) \mathcal{O}_h(y') \right) \right\rangle \times \left\langle Q^4 \left(\mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \right) J(x) J(0) \right\rangle$$

Factorization in a simplifying limit: F<<M²</p>

The SUSY-breaking sector correlator should be evaluated at short distance. So we can use the OPE:

$$\mathcal{O}_h^{\dagger}(y)\mathcal{O}_h(y') \sim \dots + \frac{\mathcal{O}_{\Delta}}{(y-y')^{\Delta-2\Delta_h}} + \dots$$

 $\langle Q^4 \mathcal{O}_{\Delta} \rangle \neq 0$

Simplifying limits

$$\langle Q^4 J(x) J(0) \rangle = \frac{\lambda^2 \langle Q^4 \mathcal{O}_{\Delta} \rangle}{\Lambda^{2(\Delta_h + \Delta_m - 3)}} \int d^4 y \, d^4 y' \, \frac{\langle Q^4 \left(\mathcal{O}_m^{\dagger}(y) \mathcal{O}_m(y') \right) J(x) J(0) \rangle}{(y - y')^{2\Delta_h - \Delta}}$$
$$\langle Q^2 J(x) J(0) \rangle = \frac{\lambda^2 \langle Q^2 \mathcal{O}_h \rangle}{\Lambda^{\Delta_h + \Delta_m - 3}} \int d^4 y \, \langle Q^2 (\mathcal{O}_m(y)) J(x) J(0) \rangle$$

 \odot In this limit, ratio of sfermion to gaugino masses depends on Δ :

$$\frac{m_{\tilde{f}}^2}{M_{\tilde{g}}^2} \sim \left(\frac{\sqrt{F}}{M}\right)^{\Delta - 2\Delta_h}$$

We recognize the phenomenon of hidden-sector renormalization described in Cohen, Roy & Schmaltz!

Simplifying limit

$$\frac{m_{\tilde{f}}^2}{M_{\tilde{g}}^2} \sim \left(\frac{\sqrt{F}}{M}\right)^{\Delta - 2\Delta_h}$$

- If hidden sector is free @ messenger scale, then must have $\Delta \leq 2\Delta_h$ with equality only for elementary singlets. Then $m_{\tilde{f}}^2 \gg M_{\tilde{g}}^2$ or $m_{\tilde{f}}^2 \sim M_{\tilde{g}}^2$.
- If hidden sector is interacting CFT @ messenger scale, then Δ in principle unconstrained. If $\Delta>2\Delta_h$, can get sfermions much lighter than gauginos.

This is the relevant regime for many interesting models: gaugino mediation, conformal sequestering, strong hidden sector solution to mu problem...

Summary

- We constructed a framework for analyzing general models of gauge mediation: arbitrary hidden sectors coupled to the MSSM via SM gauge interactions.
- Using our framework, we derived general properties of gauge mediation. These include:
 - Parameter space: 3 complex parameters (gaugino masses) and 3 real parameters (sfermion masses)
 - Two sum rules for sfermion masses
 - SUSY CP problem in general
- We constructed weakly-coupled messenger models which cover the entire GGM parameter space.

Summary

- We also built a framework within GGM to describe the most general messenger models of gauge mediation.
- We saw how the framework incorporated existing models and their phenomena.
- We also showed how the ratio of gaugino to sfermion masses depended on the type of interaction between messenger and SUSY-breaking sector, as well as the dynamics of these sectors.

Future Directions

- Detailed study of GGM at colliders. New, unexplored signatures at the Tevatron and the LHC! (Carpenter; Rajaraman et al.; Katz & Tweedle; Meade, Reece & D5; Kribs, Martin, Roy, Spannowsky)
- Is $\Delta > 2\Delta_h$ really possible in a SCFT? (Cf. Rattazzi, Rychkov, Tonni & Vichi; Hellerman)
- Extensions of GMGM framework to include mu/Bmu sector? (Cf. Komargodski & Seiberg)
- Can we prove positivity of sfermion masses in any context?

The End

Messenger Parity

We have related the soft masses to the current twopoint functions. However, we ignored the contribution of the hypercharge one-point function (FI parameter):

$$\langle J_1 \rangle = \zeta \neq 0$$

It is dangerous because it contributes to the scalar masses:

$$\delta m_{\tilde{f}}^2 = g_1^2 Y_f \zeta$$

Not positive definite and lower order in g. So this can cause some scalars (esp. sleptons) to become tachyonic!

Messenger Parity

- Thus we would like the hidden sector to be invariant under a symmetry that forbids J one-point functions.
- The simplest such symmetry is a Z_2 parity:

$${\cal J}
ightarrow - {\cal J}$$

Examples of this symmetry in the context of minimal gauge mediation have been discussed in the literature. (Dine & Fischler; Dimopoulos & Gludice)